Learning Image Transformations without Training Examples

نویسنده

  • Sergey Pankov
چکیده

The use of image transformations is essential for efficient modeling and learning of visual data. But the class of relevant transformations is large: affine transformations, projective transformations, elastic deformations, ... the list goes on. Therefore, learning these transformations, rather than hand coding them, is of great conceptual interest. To the best of our knowledge, all the related work so far has been concerned with either supervised or weakly supervised learning (from correlated sequences, video streams, or image-transform pairs). In this paper, on the contrary, we present a simple method for learning affine and elastic transformations when no examples of these transformations are explicitly given, and no prior knowledge of space (such as ordering of pixels) is included either. The system has only access to a moderately large database of natural images arranged in no particular order.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Rigid Image Registration Using Self-Supervised Fully Convolutional Networks without Training Data

A novel non-rigid image registration algorithm is built upon fully convolutional networks (FCNs) to optimize and learn spatial transformations between pairs of images to be registered in a self-supervised learning framework. Different from most existing deep learning based image registration methods that learn spatial transformations from training data with known corresponding spatial transform...

متن کامل

Non-rigid image registration using fully convolutional networks with deep self-supervision

We propose a novel non-rigid image registration algorithm that is built upon fully convolutional networks (FCNs) to optimize and learn spatial transformations between pairs of images to be registered. Different from most existing deep learning based image registration methods that learn spatial transformations from training data with known corresponding spatial transformations, our method direc...

متن کامل

Learning in Computer Vision and Image Understanding

Using learning in segmentation or recognition tasks has several advantages over classical model-based techniques. These include adaptivity to noise and changing environments, as well as in many cases, a simplified system generation procedure. Yet, learning from examples introduces a new challenge getting a representative data set of examples from which to learn. Applications of learning systems...

متن کامل

Explanation-Based Learning for Image Understanding

Existing prior domain knowledge represents a valuable source of information for image interpretation problems such as classifying handwritten characters. Such domain knowledge must be translated into a form understandable by the learner. Translation can be realized with Explanation-Based Learning (EBL) which provides a kind of dynamic inductive bias, combining domain knowledge and training exam...

متن کامل

Learning Monotonic Transformations for Classification

A discriminative method is proposed for learning monotonic transformations of the training data while jointly estimating a large-margin classifier. In many domains such as document classification, image histogram classification and gene microarray experiments, fixed monotonic transformations can be useful as a preprocessing step. However, most classifiers only explore these transformations thro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011